VARIATION IN CHROMOSOME NUMBER

BY: BARUN K PRABHAT ASSISTANT PROFESSOR DEPARTMENT OF ZOOLOGY J N COLLEGE, MADHUBANI L N M U (DARBHANGA)

B Sc Part - II GENETICS CHROMOSOMAL ABERRATION BARUN PRABHA

Chromosome changes are classified in terms of addition or elimination ofparts of chromosomes, whole chromosomes or whole sets of chromosomes (genomes). Two main classes are -

- (i) Euploidy: Changes in whole sets of chromosomes, i. e. addition or deletion of whole sets of chromosomes
- (ii) An euploidy: Changes in chromosome number by either by additions or deletions of a single chromosome from a set.

B Sc Part - II GENETICS CHROMOSOMAL Z ABERRATION BARUN PRABHA

Partial List of Terms to Describe Aneuploidy, Using *Drosophila* as an Example (Eight Chromosomes: X, X, 2, 2, 3, 3, 4, 4)

Туре	Formula	Number of Chromosomes	Example X, X, 2, 2, 3, 3, 4, 4	
Normal	2 <i>n</i>	8		
Monosomic	2n - 1	7	X, X, 2, 2, 3, 4, 4	
Nullisomic	2n - 2	6	X, X, 2, 2, 4, 4	
Double monosomic	2n-1-1	6	X, X, 2, 3, 4, 4	
Trisomic	2n + 1	9	X, X, 2, 2, 3, 3, 4, 4, 4	
Tetrasomic	2n + 2	10	X, X, 2, 2, 3, 3, 3, 3, 4, 4	
Double trisomic $2n + 1 + 1$		10	X, X, 2, 2, 2, 3, 3, 3, 4, 4	

B Sc Part - II GENETICS CHROMOSOMAL 3 ABERRATION BARUN PRABHAT

Monosomic: A diploid cell missing a single chromosome

Nullisomic: A cell missing both copies of that chromosome

Double Monosomic: A cell missing two non-homologous chromosomes

For Extra Chromosomes

Trisomic: a chromosome is present in triplicate (cell has 2n + 1 chromosomes)

Tetrasomíc: a díploid cell with an extra chromosome

Double trisomic: 2 chromosomes are present in triplicate in the zygote (so that the cell has

2n + 1 + 1 chromosomes)

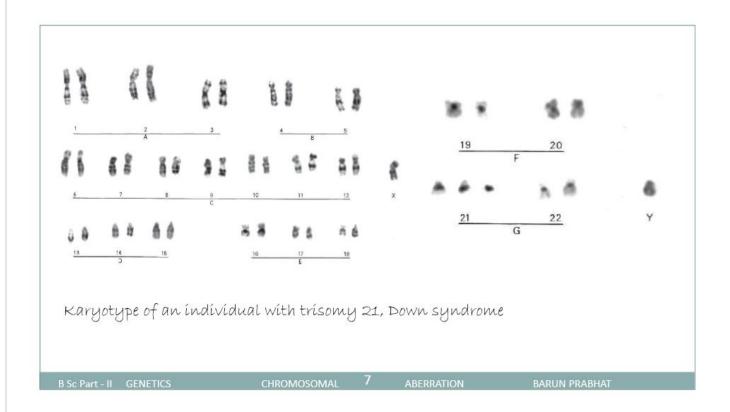
cause of Aneuploidy:

Mondisjunction in meiosis or by chromosomal lagging whereby one chromosome moves more slowly than the others during anaphase

B Sc Part - II GENETICS CHROMOSOMAL 4 ABERRATION BARUN PRABHA'

Karyotype	Chromosome Formula	Clinical Syndrome	Estimated Frequency at Birth	Phenotype	
17, +21	2n + 1	Down	1/700	Short, broad hands with palmar crease, short statur hyperflexibility of joints, mental retardation, broad her round face, open mouth with large tongue, epicanthal	ad wit
17, +13	2n + 1	Patau	1/20,000	Mental deficiency and deafness, minor muscle seizu cleft lip and/or palate, cardiac anomalies, posterior prominence.	ıres,
47, +18	2n + 1	Edward	1/8000	Congenital malformation of many organs, low-set, malformed ears, receding mandible, small mouth at nose with general elfin appearance, mental deficien horseshoe or double kidney, short sternum; 90 perc within first six months after birth.	cy.
45, X	2n - 1	Turner	1/2500 female births	Female with retarded sexual development, usually s short stature, webbing of skin in neck region, cardio lar abnormalities, hearing impairment.	
47, XXY	2n + 1	Klinefelter	1/500 male births	Male, subfertile with small testes, developed breasts feminine-pitched voice, knock-knees, long limbs.	5,
48, XXXY	2n + 2				
48, XXYY	2n + 2				
49, XXXXXY	2n + 3				
50, XXXXXXY	2n + 4				
47, XXX	2n + 1	Triplo-X	1/700	Female with usually normal genitalia and limited fer slight mental retardation.	tility
B Sc Part - II	GENETICS	СН	romosomal 5	ABERRATION BARUN PRA	BHA

Aneuploidy in Human Beings


About one in 160 live human births has some sort of chromosomal anomaly; most are balanced translocations, autosomal trisomics, or sexchromosomal aneuploids.

Down Syndrome: Trisomy 21 (Down Syndrome), 47,XX or XY,21

B Sc Part - II GENETICS CHROMOSOMAL 6

6 AREDDATIC

Down syndrome

Frequency: about one in seven hundred (1/700) live births.

Features: mildly to moderately mentally retarded

congenital heart defects

a very high (1/100) risk of acute leukemia.

are short and have a broad, short skull;

hyperflexibility of joints

excess skin on the back of the neck.

Physician John Langdon Down first described this syndrome in 1866.

Hand and foot of child with Down Syndrome

child with Down Syndrome Facial expression

B Sc Part - II GENETICS

CHROMOSOMA

ARFRRATIC

Trisomy 18 (Edward Syndrome), 47,XX or XY,18

Described by J.H. Edwards in 1960

Frequency: one in ten thousand (1/8,000) live births.

Affected individuals - mostly female, with 80 to 90%

mortality by two years of age.

usually has elfin appearance

small nose and mouth,

a receding lower jaw, abnormal ears

receding mandible, creases on the fingers

right club foot, left rockottom foot

overlapping of little and index fingers

severe mental retardation

B Sc Part - II GENETICS

CHROMOSOMA

ABERRATIO

Trisomy 13 (Patau Syndrome), 47, +13; XX or XY,13,

Described by Patau in 1960

Frequency: one in twenty thousand (1/20,000) live births.

Features: cleft palate, cleft lip, con-genital heart defects,

polydactyly, and severe mental retardation.

Mortality is very high in the first year of life.

Non-existent in adults as severity results in early death

Most of the death within 3 months

Other autosomal trisomics are known but are extremely rare.

These include trisomy 8 (47,XX or XY,8) and cat's eye syndrome, a trisomy of an unidentified, small acrocentric chromosome (47,XX or XY,[acrocentric]).

Several aneuploids involving sex chromosomes are also known.

B Sc Part - II

GENETICS

CHROMOSOMA

O ABERRATIO

Described by H. H. Turner Turner Syndrome, (45, X)

Chromosome complement: 44 autosomes + one X chromosome

1/2500 live female births; in population 1/5000 More than 90% abort spontaneously

virtually no ovary, Sterile limited secondary sexual characteristics

Ovaries have fibrous streak of tissues

Short stature, low set ears, Webbed neck Shield like-chest

Mental deficiency not associated 19 00000 200

X chromatin negative

Origin: probably, from eggs or sperm with no sex-chromosome or from loss of sex chromosomes in mitosis during early cleavage after formation of an XX or XY zygote.

B Sc Part - II

GENETIC

CHROMOSOMAI

1 ABERRATIC

Klinefelter Syndrome (47, XXY)

Described by:

H. F. Klinefelter in 1942

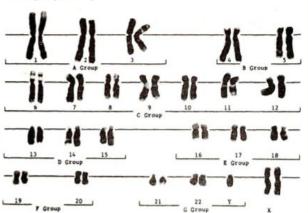
Frequency:

1/500 live male births

Features: Enlarged breasts,

underdeveloped body hair,

small testis, small prostrate glands


One or more chromatin body

Karyotype: XXYY, XXXY, XXXYY, XXXXY, a

XXXXXY

Mental retardation if more than

2 X chromosomes present

Note: Turner and Klinefelter syndrome indicate that sex in human is determined by γ chromosome

B Sc Part - II GENETICS

CHROMOSOMAL

AREDDATIC

BARLIN PRABHAT

Thanks

Suggested readings: various books on Genetics, online study materials

B Sc Part - II GENETICS CHROMOSOMAI 13 ABERRATION BARUN PRABHAT